Previous research has found that multiple sclerosis (MS) patients may
have a specific microbial signature in their gut microbiota that could
impact disease pathogenesis. However, it is
not known to what extent structural and functional changes in the gut
microbiota are primary contributors to MS pathogenesis and which
underlying mechanisms are involved.
A new study, led by Dr. Sergio Baranzini from the Department of
Neurology at the University of California San Francisco (USA), has found
that specific gut bacteria from multiple sclerosis patients regulate
immune responses and exacerbate MS-like symptoms in mice.
The researchers used 16S ribosomal ribonucleic acid (rRNA) gene
sequencing of stool samples from 71 untreated relapsing-remitting MS
patients and 71 healthy controls.
Although they did not find shifts in the gut microbiota structure,
specific bacterial taxa were significantly associated with MS. Both
Akkermansia muciniphila and Acinetobacter calcoaceticus were increased
in MS patients. Although the role of A. muciniphila has been extensively
studied in the context of metabolism, little is known about its role in
regulating immune responses and these results are in agreement with
previous research supporting A. muciniphila as a bacterial species that
exacerbates inflammation during infection. In contrast, MS patients
exhibited decreased levels of Parabacteroides distasonis.
have a specific microbial signature in their gut microbiota that could
impact disease pathogenesis. However, it is
not known to what extent structural and functional changes in the gut
microbiota are primary contributors to MS pathogenesis and which
underlying mechanisms are involved.
A new study, led by Dr. Sergio Baranzini from the Department of
Neurology at the University of California San Francisco (USA), has found
that specific gut bacteria from multiple sclerosis patients regulate
immune responses and exacerbate MS-like symptoms in mice.
The researchers used 16S ribosomal ribonucleic acid (rRNA) gene
sequencing of stool samples from 71 untreated relapsing-remitting MS
patients and 71 healthy controls.
Although they did not find shifts in the gut microbiota structure,
specific bacterial taxa were significantly associated with MS. Both
Akkermansia muciniphila and Acinetobacter calcoaceticus were increased
in MS patients. Although the role of A. muciniphila has been extensively
studied in the context of metabolism, little is known about its role in
regulating immune responses and these results are in agreement with
previous research supporting A. muciniphila as a bacterial species that
exacerbates inflammation during infection. In contrast, MS patients
exhibited decreased levels of Parabacteroides distasonis.
No comments:
Post a Comment