When faced with systemic illness, animals eat less to conserve energy instead of foraging for food and to deprive pathogens of nutrients. However, this can harm beneficial gut bacteria, which have an important role in health and disease.
To investigate how microbiota might be supported during illness, Chervonsky and his team focused on a potential internal resource produced by the host – L-fucose, a sugar which has been shown to affect gut microbes. A host cannot use L-fucose for energy, but when bound to proteins, it can be used by microbes as a food source. Under normal conditions, however, the small intestine of mice produces almost no L-fucose.
The team exposed different types of mice to a molecule that mimicked a systemic infection. The mice became sick – eating less food, drinking less water and losing weight. Only a few hours after this induced sickness, the researchers observed that L-fucose was produced and present on almost every surface of the small intestine. This effect was seen only in response to illness.
To investigate how microbiota might be supported during illness, Chervonsky and his team focused on a potential internal resource produced by the host – L-fucose, a sugar which has been shown to affect gut microbes. A host cannot use L-fucose for energy, but when bound to proteins, it can be used by microbes as a food source. Under normal conditions, however, the small intestine of mice produces almost no L-fucose.
The team exposed different types of mice to a molecule that mimicked a systemic infection. The mice became sick – eating less food, drinking less water and losing weight. Only a few hours after this induced sickness, the researchers observed that L-fucose was produced and present on almost every surface of the small intestine. This effect was seen only in response to illness.
No comments:
Post a Comment