Disrupted immunity in the fetal brain is linked to neurodevelopmental disorders

Disrupted fetal immune system development, such as that caused by viral infection in the mother, may be a key factor in the later appearance of certain neurodevelopmental disorders. This finding emerges from a Weizmann Institute study published in Science on June 23, 2016.
The study may explain, among other things, how the mother's infection with the cytomegalovirus (CMV) during pregnancy, which affects her own and her fetus's immune system, increases the risk that her offspring will develop autism or schizophrenia, sometimes years later. This increased risk of neurodevelopmental diseases had been discovered many years ago in epidemiological studies and confirmed in mouse models. The Weizmann study, led by Dr. Ido Amit and Prof. Michal Schwartz, of the Immunology and Neurobiology Departments, respectively, provides a possible explanation for this increase on the cellular and the mechanistic molecular levels.

Indicator of chronic fatigue syndrome found in gut bacteria

Physicians have been mystified by chronic fatigue syndrome, a condition where normal exertion leads to debilitating fatigue that isn't alleviated by rest. There are no known triggers, and diagnosis requires lengthy tests administered by an expert.
Due to this lack of information, some people have even suggested the disease may be psychosomatic.
Now, for the first time, Cornell researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.
In a study published June 23 in the journal Microbiome, the team describes how they correctly diagnosed myalgic encephalomyeletis/chronic fatigue syndrome (ME/CFS) in 83 percent of patients through stool samples and blood work, offering a noninvasive diagnosis and a step toward understanding the cause of the disease.
"Our work demonstrates that the gut bacterial microbiome in ME/CFS patients isn't normal, perhaps leading to gastrointestinal and inflammatory symptoms in victims of the disease," said Maureen Hanson, the Liberty Hyde Bailey Professor in the Department of Molecular Biology and Genetics and the paper's senior author. "Furthermore, our detection of a biological abnormality provides further evidence against the ridiculous concept that the disease is psychological in origin.



'via Blog this'

New species of bacteria found to cause Lyme disease | Science News

Until recently, only one bacterium in North America was known to cause the disease: Borrelia burgdorferi. (In Europe, two other species are more common.)This year, researchers at Mayo Clinic testing blood and synovial fluid samples from people infected with Lyme disease discovered six infections that did not trace to B. burgdorferi. In addition to a rash, fever and other classic Lyme symptoms, those patients also experienced confusion, nausea and vomiting. “Not so typical for Lyme disease,” Mead observed.
A previously unknown species of Borrelia was causing the disease, the Mayo team reported in the May issue of Lancet Infectious Diseases. Infections from the newly named Borrelia mayoniiappear to cause unusually high concentrations of bacteria in the blood. The patients recovered after receiving the same antibiotics that treat Lyme disease. As of now, samples taken from ticks show that B. mayonii is only found in the Upper Midwest.

A Bacterial Component to Alzheimer’s-Type Dementia Seen via a Systems Biology Approach that Links Iron Dysregulation and Inflammagen Shedding to Disease

The progression of Alzheimer’s disease (AD) is accompanied by a great many observable changes, both molecular and physiological. These include oxidative stress, neuroinflammation, and (more proximal to cognitive decline) the death of neuronal and other cells. A systems biology approach seeks to organize these observed variables into pathways that discriminate those that are highly involved (i.e., causative) from those that are more usefully recognized as bystander effects. We review the evidence that iron dysregulation is one of the central causative pathway elements here, as this can cause each of the above effects. In addition, we review the evidence that dormant, non-growing bacteria are a crucial feature of AD, that their growth in vivo is normally limited by a lack of free iron, and that it is this iron dysregulation that is an important factor in their resuscitation. Indeed, bacterial cells can be observed by ultrastructural microscopy in the blood of AD patients. A consequence of this is that the growing cells can shed highly inflammatory components such as lipopolysaccharides (LPS). These too are known to be able to induce (apoptotic and pyroptotic) neuronal cell death. There is also evidence that these systems interact with elements of vitamin D metabolism. This integrative systems approach has strong predictive power, indicating (as has indeed been shown) that both natural and pharmaceutical iron chelators might have useful protective roles in arresting cognitive decline, and that a further assessment of the role of microbes in AD development is more than highly warranted."



'via Blog this'

Serotonin Activates Bacterial Quorum Sensing and Enhances the Virulence of Pseudomonas aeruginosa in the Host. - PubMed - NCBI

Bacteria in humans play an important role in health and disease. Considerable emphasis has been placed in understanding the role of bacteria in host-microbiome interkingdom communication. Here we show that serotonin, responsible for mood in the brain and motility in the gut, can also act as a bacterial signaling molecule for pathogenic bacteria. Specifically, we found that serotonin acts as an interkingdom signaling molecule via quorum sensing and that it stimulates the production of bacterial virulence factors and increases biofilm formation in vitro and in vivo in a novel mouse infection model. This discovery points out at roles of serotonin both in bacteria and humans, and at phenotypic implications not only manifested in mood behavior but also in infection processes in the host. Thus, regulating serotonin concentrations in the gut may provide with paradigm shifting therapeutic approaches."



Nature plus nurture: the triggering of multiple sclerosis.

Recent clinical and experimental studies indicate that multiple sclerosis develops as consequence of a failed interplay between genetic ("nature") and environmental ("nurture") factors. A large number of risk genes favour an autoimmune response against the body's own brain matter. New experimental data indicate that the actual trigger of this attack is however provided by an interaction of brain-specific immune cells with components of the regular commensal gut flora, the intestinal microbiota. This concept opens the way for new therapeutic approaches involving modulation of the microbiota by dietary or antibiotic regimens."




Fossil fuel combustion endangers children's health in two significant ways: A scientist reviews the evidence

Writing in a commentary in Environmental Health Perspectives, Frederica Perera, director of the Columbia Center for Children's Environmental Health (CCCEH), identifies fossil fuel combustion and associated air pollution and carbon dioxide (CO2) as the root cause of much of the ill health of children today. Because of their inherent biological vulnerability, children now bear a disproportionate burden of disease from both pollution and climate change.

Among the conclusions: by reducing air pollution we will see fewer babies born at low birth weight, and fewer children suffering from asthma and neurodevelopmental problems such as lower IQ and ADHD. Lowered emissions of CO2 and mitigation of climate change will reduce the number of children dying as a result of floods and drought, and fewer children will suffer from heat stress, malnutrition, infectious disease, respiratory illness, and mental illness from displacement, social, and political instability.


Sex-Specific Effects of Arsenic Exposure on the Trajectory and Function of the Gut Microbiome. - PubMed - NCBI

 "The gut microbiome is deeply involved in numerous aspects of human health; however, it can be readily perturbed by environmental toxicants, such as arsenic. Meanwhile, the interaction among host, gut microbiome, and xenobiotics is a very complex dynamic process. Previously, we have demonstrated that gut microbiome phenotypes driven by host genetics and bacterial infection affect the responses to arsenic exposure. The role of host sex in shaping the gut microbiome raises the question whether sex plays a role in exposure-induced microbiome responses. To examine this, we used 16S rRNA sequencing and metagenomics sequencing to analyze the changes of the gut microbiome and its associated functional metagenome in both female and male C57/BL6 mice. Our results clearly demonstrated that arsenic exposure perturbed the trajectory and function of the gut microbiome in a sex-specific manner."




Bacterial Amyloid and DNA are Important Constituents of Senile Plaques: Further Evidence of the Spirochetal and Biofilm Nature of Senile Plaques

 It has long been known that spirochetes form clumps or micro colonies in vitro and in vivo. Cortical spirochetal colonies in syphilitic dementia were considered as reproductive centers for spirochetes. Historic and recent data demonstrate that senile plaques in Alzheimer’s disease (AD) are made up by spirochetes. Spirochetes, including Borrelia burgdorferi, are able to form biofilm in vitro. Senile plaques are also reported to contain elements of biofilm constituents. We expected that AβPP and Aβ (the main components of senile plaques) also occur in pure spirochetal biofilms, and bacterial DNA (an important component of biofilm) is also present in senile plaques. Histochemical, immunohistochemical, and in situ hybridization techniques and the TUNEL assay were used to answer these questions. The results obtained demonstrate that Aβ and DNA are key components of both pure spirochetal biofilms and senile plaques in AD and confirm the biofilm nature of senile plaques. These observations validate previous observations that AβPP and/or an AβPP-like amyloidogenic protein are an integral part of spirochetes, and indicate that bacterial amyloid is a constituent of senile plaques. DNA fragmentation in senile plaques further confirms their bacterial nature and provides biochemical evidence for spirochetal cell death. Spirochetes evade host defenses, locate intracellularly, form more resistant atypical forms and notably biofilms, which contribute to and sustain chronic infection and inflammation and explain the slowly progressive course of dementia in AD. To consider co-infecting microorganisms is equally important, as multi-species biofilms may result in a higher resistance to treatments and a more severe dementia.




Reversal of cognitive decline in Alzheimer's disease.

Alzheimer's disease is one of the most significant healthcare problems nationally and globally. Recently, the first description of the reversal of cognitive decline in patients with early Alzheimer's disease or its precursors, MCI (mild cognitive impairment) and SCI (subjective cognitive impairment), was published [1]. The therapeutic approach used was programmatic and personalized rather than monotherapeutic and invariant, and was dubbed metabolic enhancement for neurodegeneration (MEND). Patients who had had to discontinue work were able to return to work, and those struggling at work were able to improve their performance. The patients, their spouses, and their co-workers all reported clear improvements. Here we report the results from quantitative MRI and neuropsychological testing in ten patients with cognitive decline, nine ApoE4+ (five homozygous and four heterozygous) and one ApoE4-, who were treated with the MEND protocol for 5-24 months. The magnitude of the improvement is unprecedented, providing additional objective evidence that this programmatic approach to cognitive decline is highly effective. These results have far-reaching implications for the treatment of Alzheimer's disease, MCI, and SCI; for personalized programs that may enhance pharmaceutical efficacy; and for personal identification of ApoE genotype.

The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes

Even taking problems of diagnosis into account, a five-fold increase in the incidence of autism in recent decades, in the absence of any known changes in the human gene pool suggests a strong environmental influence. Numerous pollutants have been implicated in epidemiological studies, including pesticides, heavy metals, industrial solvents, air pollutants, particulate matter, bisphenol A, phthalates and flame retardants. Many genes have been implicated in autism, some of which are directly related to detoxification processes. Many are also expressed prenatally in the frontal cortex when the effects of such toxins on neurodevelopment are most relevant. To gain access to the foetal brain, toxins must pass placental and blood/brain barriers and access to maternal or children's blood necessitates passage across skin, airway and intestinal barriers. Literature survey of a subset of 206 genes, defined as prime autism susceptibility candidates from an Autworks/Genotator analysis, revealed that most could be related to barrier function at blood/brain, skin, intestinal, placental or other interfaces. These genes were highly enriched in proteome datasets from blood/brain and placental trophoblast barriers and many localised to skin, intestinal, lung, umbilical and placental compartments. Many were also components of the exosomal/transcytosis pathway that is involved in the transfer of compounds across cells themselves, rather than between them. Several are involved in the control of respiratory cilia that sweep mucus and noxious particles from the airways. A key role of autism susceptibility genes may thus relate to their ability to modulate the access of numerous toxins to children, and adults and, during gestation, to the developing foetal brain.

Artificial sweeteners induce glucose intolerance by altering the gut microbiota : Nature : Nature Publishing Group

Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.

Gut microbiota in early pediatric multiple sclerosis: a case-control study. - PubMed - NCBI

BACKGROUND AND PURPOSE:
Alterations in the gut microbial community composition may be influential in neurological disease. Microbial community profiles were compared between early onset pediatric multiple sclerosis (MS) and control children similar for age and sex.

METHODS:
Children ≤18 years old within 2 years of MS onset or controls without autoimmune disorders attending a University of California, San Francisco, USA, pediatric clinic were examined for fecal bacterial community composition and predicted function by 16S ribosomal RNA sequencing and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. Associations between subject characteristics and the microbiota, including beta diversity and taxa abundance, were identified using non-parametric tests, permutational multivariate analysis of variance and negative binomial regression.

RESULTS:
Eighteen relapsing-remitting MS cases and 17 controls (mean age 13 years; range 4-18) were studied. Cases had a short disease duration (mean 11 months; range 2-24) and half were immunomodulatory drug (IMD) naïve. Whilst overall gut bacterial beta diversity was not significantly related to MS status, IMD exposure was (Canberra, P < 0.02). However, relative to controls, MS cases had a significant enrichment in relative abundance for members of the Desulfovibrionaceae (Bilophila, Desulfovibrio and Christensenellaceae) and depletion in Lachnospiraceae and Ruminococcaceae (all P and q < 0.000005). Microbial genes predicted as enriched in MS versus controls included those involved in glutathione metabolism (Mann-Whitney, P = 0.017), findings that were consistent regardless of IMD exposure.

CONCLUSIONS:
In recent onset pediatric MS, perturbations in the gut microbiome composition were observed, in parallel with predicted enrichment of metabolic pathways associated with neurodegeneration. Findings were suggestive of a pro-inflammatory milieu."




Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor : Nature Medicine

Astrocytes have important roles in the central nervous system (CNS) during health and disease. Through genome-wide analyses we detected a transcriptional response to type I interferons (IFN-Is) in astrocytes during experimental CNS autoimmunity and also in CNS lesions from patients with multiple sclerosis (MS). IFN-I signaling in astrocytes reduces inflammation and experimental autoimmune encephalomyelitis (EAE) disease scores via the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) and the suppressor of cytokine signaling 2 (SOCS2). The anti-inflammatory effects of nasally administered interferon (IFN)-β are partly mediated by AHR. Dietary tryptophan is metabolized by the gut microbiota into AHR agonists that have an effect on astrocytes to limit CNS inflammation. EAE scores were increased following ampicillin treatment during the recovery phase, and CNS inflammation was reduced in antibiotic-treated mice by supplementation with the tryptophan metabolites indole, indoxyl-3-sulfate, indole-3-propionic acid and indole-3-aldehyde, or the bacterial enzyme tryptophanase. In individuals with MS, the circulating levels of AHR agonists were decreased. These findings suggest that IFN-Is produced in the CNS function in combination with metabolites derived from dietary tryptophan by the gut flora to activate AHR signaling in astrocytes and suppress CNS inflammation."



'via Blog this'

Too much folate in pregnant women increases risk for autism, study suggests

Women who plan on becoming pregnant are told they need enough of the nutrient folate to ensure proper neurodevelopment of their babies, but new research from the Johns Hopkins Bloomberg School of Public Health suggests there could be serious risks in having far too much of the same nutrient.

The researchers found that if a new mother has a very high level of folate right after giving birth - more than four times what is considered adequate - the risk that her child will develop an autism spectrum disorder doubles. Very high vitamin B12 levels in new moms are also potentially harmful, tripling the risk that her offspring will develop an autism spectrum disorder. If both levels are extremely high, the risk that a child develops the disorder increases 17.6 times. Folate, a B vitamin, is found naturally in fruits and vegetables, while the synthetic version, folic acid, is used to fortify cereals and breads in the United States and in vitamin supplements.



'via Blog this'

Association Between Artificially Sweetened Beverage Consumption During Pregnancy and Infant Body Mass Index: JAMA Pediatrics

Importance
The consumption of artificial sweeteners has increased substantially in recent decades, including among pregnant women. Animal studies suggest that exposure to artificial sweeteners in utero may predispose offspring to develop obesity; however, to our knowledge, this has never been studied in humans.
 Objective  To determine whether maternal consumption of artificially sweetened beverages during pregnancy is associated with infant body mass index (BMI [calculated as weight in kilograms divided by height in meters squared]).
Design, Setting, and Participants  This cohort study included 3033 mother-infant dyads from the Canadian Healthy Infant Longitudinal Development (CHILD) Study, a population-based birth cohort that recruited healthy pregnant women from 2009 to 2012. Women completed dietary assessments during pregnancy, and their infants’ BMI was measured at 1 year of age (n = 2686; 89% follow-up). Statistical analysis for this study used data collected after the first year of follow-up, which was completed in October 2013. The data analysis was conducted in August 2015.
Exposures  Maternal consumption of artificially sweetened beverages and sugar-sweetened beverages during pregnancy, determined by a food frequency questionnaire.
Main Outcomes and Measures  Infant BMI z score and risk of overweight at 1 year of age, determined from objective anthropometric measurements and defined according to World Health Organization reference standards.
Results  The mean (SD) age of the 3033 pregnant women was 32.4 (4.7) years, and their mean (SD) BMI was 24.8 (5.4). The mean (SD) infant BMI z score at 1 year of age was 0.19 (1.05), and 5.1% of infants were overweight. More than a quarter of women (29.5%) consumed artificially sweetened beverages during pregnancy, including 5.1% who reported daily consumption. Compared with no consumption, daily consumption of artificially sweetened beverages was associated with a 0.20-unit increase in infant BMI z score (adjusted 95% CI, 0.02-0.38) and a 2-fold higher risk of infant overweight at 1 year of age (adjusted odds ratio, 2.19; 95% CI, 1.23-3.88). These effects were not explained by maternal BMI, diet quality, total energy intake, or other obesity risk factors. There were no comparable associations for sugar-sweetened beverages.
Conclusions and Relevance  To our knowledge, we provide the first human evidence that maternal consumption of artificial sweeteners during pregnancy may influence infant BMI. Given the current epidemic of childhood obesity and widespread use of artificial sweeteners, further research is warranted to confirm our findings and investigate the underlying biological mechanisms, with the ultimate goal of informing evidence-based dietary recommendations for pregnant women."



'via Blog this'

Epigenetic study of lactose intolerance may shed light on the origin of mental illness - Medical News Today

Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder

Immune aberrations in schizophrenia and bipolar disorder have led to the hypotheses that infectious agents or corresponding immune responses might contribute to psychiatric etiopathogeneses. We investigated case–control differences in exposure to the opportunistic fungal pathogen, Candida albicans, and examined associations with cognition, medication, lifestyle, and somatic conditions. We quantified C. albicans IgG antibodies in two cohorts totaling 947 individuals and evaluated odds ratios (OR) of exposure with psychiatric disorder using multivariate regressions. The case–control cohort included 261 with schizophrenia, 270 with bipolar disorder, and 277 non-psychiatric controls; the second included 139 with first-episode schizophrenia, 78 of whom were antipsychotic naive. No differences in C. albicans exposures were found until diagnostic groups were stratified by sex. In males, C. albicans seropositivity conferred increased odds for a schizophrenia diagnosis (OR 2.04–9.53, P⩽0.0001). In females, C. albicans seropositivity conferred increased odds for lower cognitive scores on Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) in schizophrenia (OR 1.12, P⩽0.004), with significant decreases on memory modules for both disorders (P⩽0.0007–0.03). C. albicans IgG levels were not impacted by antipsychotic medications. Gastrointestinal (GI) disturbances were associated with elevated C. albicans in males with schizophrenia and females with bipolar disorder (P⩽0.009–0.02). C. albicans exposure was associated with homelessness in bipolar males (P⩽0.0015). In conclusion, sex-specific C. albicans immune responses were evident in psychiatric disorder subsets. Inquiry regarding C. albicans infection or symptoms may expedite amelioration of this treatable comorbid condition. Yeast exposure as a risk factor for schizophrenia and its associated cognitive and GI effects require further investigation including the possible contribution of gut–brain mechanisms.



'via Blog this'

Reduced maternal levels of common viruses during pregnancy predict offspring psychosis: potential role of enhanced maternal immune activity? - PubMed - NCBI

Viral infections during the prenatal or early childhood periods are one of the environmental factors which might play an etiological role in psychoses. Several studies report higher antibody levels against viruses during pregnancy in blood of mothers of offspring with psychotic disorders, but the presence of such viruses has never been demonstrated. The goal of this study was to investigate the potential association between viral infections during pregnancy and progeny with psychotic disorders and, for this purpose, we performed a nested case-control study involving pregnant mothers of offspring with schizophrenia or bipolar disorder with psychotic features (cases, N=43) and pregnant women with healthy offspring (controls, N=95). Since several potential viral candidates have been suggested in prior work, a broad-spectrum virus detection system was necessary. A metagenomic analysis performed with the virus discovery method VIDISCA-454 revealed only common blood-associated viruses in all cohorts. However, a significantly lower viral prevalence was detected in the group of cases and in the sub-population of pregnant mothers of offspring with schizophrenia (p<0.05). Consistent with the existing inverse correlation between the level of these viruses and the immunocompetence of an individual, we hypothesized the presence of a higher immune activity during pregnancy in mothers whose offspring later develop a psychotic disorder as compared to controls. Combining our results with previously available literature data on antibody levels during the gestation period suggests that a more prominent maternal immune activity can be considered a risk factor for developing psychosis.



'via Blog this'

Ketamine lifts depression via a byproduct of its metabolism | National Institutes of Health (NIH)

"A chemical byproduct, or metabolite, created as the body breaks down ketamine likely holds the secret to its rapid antidepressant action, National Institutes of Health (NIH) scientists and grantees have discovered.  This metabolite singularly reversed depression-like behaviors in mice without triggering any of the anesthetic, dissociative, or addictive side effects associated with ketamine. It may work via AMPA receptor stimulation rather than by NMDA receptor antagonism.



'via Blog this'